PAM3012 Digital Image Processing for Radiographers

Image Enhancement in the Frequency Domain

In this lecture

- **★**Filtering in the Frequency Domain
- *****Smoothing frequency domain filters
- *Sharpening frequency domain filters

Basics of Filtering Frequency Domain

- Frequency Domain is nothing more than the space defined by values of FT & frequency variables (u, v)
- In this lecture we put some 'meaning' to the Fourier Domain

Basics of Frequency Domain Filtering

- 1. Compute DFT of the image, F(u, v)
- 2. Multiply F(u, v) by filter function, H(u, v)
- 3. Compute inverse DFT

Basics of Frequency Domain Filtering

- H(u, v) is called a filter function

 suppresses certain frequencies in transform whilst leaving others unchanged
- Analogous to coffee filter: stops larger particles whilst allowing smaller ones to pass
- Mathematically: $\mathcal{G}(u,v) = \mathcal{H}(u,v) \times \mathcal{F}(u,v)$
- Filtered image obtain by taking inverse FT of G(u,v)

Basics of Frequency Domain Filtering

• Basic steps

Basics of Frequency Domain Filtering

- **Basic Filter Functions**
- *Lowpass Filter:* Attenuates high frequencies 'passes' low frequencies
- *Highpass Filter:* Attenuates low frequencies 'passes' high frequencies

Smoothing Frequency Domain Filters

- Edge & other sharp transitions (i.e. noise) contribute to high frequency content of Fourier Domain
- Smoothing & blurring achieved by attenuating high frequency components of Fourier Domain

$$G(u,v) = H(u,v) \times F(u,v)$$

<u>Butterworth Lowpass</u> <u>Filter</u>	a	-a
Order: n=2 Cut-off Radii 5 15 30 80 230	a	••• a
	••• a	••• a

Sharpening Frequency Domain Filters

Sharpening Frequency Domain Filters

- Smoothing & blurring achieved by attenuating high-frequency content of Fourier Transform
- Edges can be enhanced by attenuating low frequency content
- Highpass Filtering

Sharpening Frequency Domain Filters

• Highpass filtering is precisely reverse operation as lowpass filtering

$$\mathcal{H}_{hn}(u,v) = 1 - \mathcal{H}_{hn}(u,v)$$

Sharpening Frequency Domain Filters

filtered frequencies

H(u,v) = 0.607 when $D(u,v) = D_0$

Gaussian Highpass Filter	••• a	
	Cut-off Radii 15	
	30	
	80	
		10000000000000000000000000000000000000

Summary

- \star Filtering in the Frequency Domain
- \star Smoothing frequency domain filters
- *Sharpening frequency domain filters